论文标题
使用验证的分类器VGG-19使用转移学习的植物物种分类
Plant Species Classification Using Transfer Learning by Pretrained Classifier VGG-19
论文作者
论文摘要
深度学习目前是机器学习中最重要的分支,在语音识别,计算机视觉,图像分类和医学成像分析中的应用。植物识别是可以使用图像分类通过其叶子识别植物物种的领域之一。植物学家通过亲自检查将大量时间用于识别植物物种。本文介绍了一种剖析瑞典叶子和识别植物物种的颜色图像的方法。为了实现更高的精度,该任务是在预先训练的分类器VGG-19的帮助下使用转移学习完成的。分类的四个主要过程是图像预处理,图像增强,特征提取和识别,这些过程是作为整体模型评估的一部分进行的。 VGG-19分类器通过采用预定义的隐藏层(例如卷积层,最大池层和完全连接的层)来掌握叶子的特征,并最终使用Soft-Max层为所有植物类别生成特征表示。该模型获得了与瑞典叶数据集的各个方面相关的知识,其中包含15种树类,并有助于预测未知植物的适当类别,准确性为99.70%,这比以前报告的研究工作高。
Deep learning is currently the most important branch of machine learning, with applications in speech recognition, computer vision, image classification, and medical imaging analysis. Plant recognition is one of the areas where image classification can be used to identify plant species through their leaves. Botanists devote a significant amount of time to recognizing plant species by personally inspecting. This paper describes a method for dissecting color images of Swedish leaves and identifying plant species. To achieve higher accuracy, the task is completed using transfer learning with the help of pre-trained classifier VGG-19. The four primary processes of classification are image preprocessing, image augmentation, feature extraction, and recognition, which are performed as part of the overall model evaluation. The VGG-19 classifier grasps the characteristics of leaves by employing pre-defined hidden layers such as convolutional layers, max pooling layers, and fully connected layers, and finally uses the soft-max layer to generate a feature representation for all plant classes. The model obtains knowledge connected to aspects of the Swedish leaf dataset, which contains fifteen tree classes, and aids in predicting the proper class of an unknown plant with an accuracy of 99.70% which is higher than previous research works reported.