论文标题
所有狄拉克·谐波地图都没有耦合吗?
Are all Dirac-harmonic maps uncoupled?
论文作者
论文摘要
Dirac-Harmonic Maps $(F,F,ϕ)$由地图$ f:m \至n $和扭曲的旋转旋转器$ ϕ \inγ(σm\ otimes f^*tn)$组成,它们被定义为超对称能量的关键点。如果$ f $是谐波映射,则称为dirac-harmonic地图,称为\ emph {nucpled}。我们表明,在某些最小化的假设下,在封闭域上定义的狄拉克谐波图是未耦合的。
Dirac-harmonic maps $(f,ϕ)$ consist of a map $f:M\to N$ and a twisted spinor $ϕ\inΓ(ΣM\otimes f^*TN)$ and they are defined as critical points of the super-symmetric energy functional. A Dirac-harmonic map is called \emph{uncoupled}, if $f$ is a harmonic map. We show that under some minimality assumption Dirac-harmonic maps defined on a closed domain are uncoupled.