论文标题

几个积分估计和一些应用程序

Several Integral Estimates and Some Applications

论文作者

Zhang, Xuejun, Chen, Hongxin, Zhou, Min, Guo, Yuting, Tang, Pengcheng

论文摘要

在本文中,作者首先考虑了几个典型积分的双向估计。作为这些积分估计的某些应用,作者研究了正常重量一般功能空间中的点乘数$ f(p,μ,s)$到正常重量bloch类型$ \ mathcal $ \ mathcal {b_ν}(b_ {n})$在单位球$ b_ {n} $ b_ {n} $ $ b_ {在$ [0,1)$上。对于特殊的正常功能,$ \ displayStyle {μ(r)=(1-r^{2})^α\ log^ββ\ frac {e} {1-r^{2}} $($α> 0 $,$,$,$ - \ - \ f infty<β<β<β<\ iftty $),作者给出了$ $ $ $ $ $ $ $ fipter $ fippiors $ fippiors youss sem sem sem s youss。 $ \ MATHCAL {B_ν}(B_ {N})$用于所有情况。

In this paper, the authors first consider the bidirectional estimates of several typical integrals. As some applications of these integral estimates, the authors investigate the pointwise multipliers from the normal weight general function space $F(p,μ,s)$ to the normal weight Bloch type space $\mathcal{B_ν}(B_{n})$ on the unit ball $B_{n}$ of $\mathbb{C}^{n}$, where $μ$ and $ν$ are two normal functions on $[0,1)$. For the special normal function $\displaystyle{μ(r)=(1-r^{2})^α\log^β\frac{e}{1-r^{2}}}$ ($α>0$, $-\infty<β<\infty$), the authors give the necessary and sufficient conditions of pointwise multipliers from $F(p,μ,s)$ to $\mathcal{B_ν}(B_{n})$ for all cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源