论文标题

超低功率范围误差缓解超宽带精确本地化

Ultra-low-power Range Error Mitigation for Ultra-wideband Precise Localization

论文作者

Angarano, Simone, Salvetti, Francesco, Mazzia, Vittorio, Fantin, Giovanni, Gandini, Dario, Chiaberge, Marcello

论文摘要

在室外和室内环境中的精确定位是一个具有挑战性的问题,目前构成了几种实际应用的重要限制。超宽带(UWB)本地化技术代表了解决该问题的宝贵低成本解决方案。但是,特定无线电环境的非线(NLOS)条件和复杂性很容易在范围测量中引入正偏见,从而导致高度不准确和不令人满意的位置估计。鉴于此,我们利用了深度神经网络优化技术的最新进步及其在超低功率微控制器上的实施,以引入有效的范围误差缓解解决方案,该解决方案可在NLOS或LOS条件下提供具有几兆瓦功率的校正。我们广泛的实验认可了我们的低成本和力量效率方法的优势和改进。

Precise and accurate localization in outdoor and indoor environments is a challenging problem that currently constitutes a significant limitation for several practical applications. Ultra-wideband (UWB) localization technology represents a valuable low-cost solution to the problem. However, non-line-of-sight (NLOS) conditions and complexity of the specific radio environment can easily introduce a positive bias in the ranging measurement, resulting in highly inaccurate and unsatisfactory position estimation. In the light of this, we leverage the latest advancement in deep neural network optimization techniques and their implementation on ultra-low-power microcontrollers to introduce an effective range error mitigation solution that provides corrections in either NLOS or LOS conditions with a few mW of power. Our extensive experimentation endorses the advantages and improvements of our low-cost and power-efficient methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源