论文标题
转移视角以查看差异:一种基于骨架的动作识别的新型多视图方法
Shifting Perspective to See Difference: A Novel Multi-View Method for Skeleton based Action Recognition
论文作者
论文摘要
基于骨架的人类行动识别是由于其复杂的动态而是一项长期挑战。动态的一些细粒细节在分类中起着至关重要的作用。现有的工作主要集中在设计带有更复杂的相邻矩阵的增量神经网络上,以捕获关节关系的细节。但是,他们仍然很难区分具有广泛相似运动模式但属于不同类别的动作。有趣的是,我们发现,运动模式上的细微差异可以大大放大,并且可以通过指定的视图方向易于区分,在这些方向上,该属性以前从未得到充分探索。与以前的工作截然不同,我们通过提出一种概念上简单而有效的多视图策略来提高性能,该策略从一系列动态视图功能中识别动作。具体来说,我们设计了一个新颖的骨骼锚定建议(SAP)模块,该模块包含一个多头结构来学习一组视图。为了学习不同视图的特征学习,我们引入了一种新的角度表示,以在不同观点下的动作转换并将转换归因于基线模型。我们的模块可以与现有的动作分类模型无缝合作。与基线模型合并,我们的SAP模块在许多具有挑战性的基准上展示了明显的性能增长。此外,全面的实验表明,我们的模型始终如一地击败了最新的实验,并且在处理损坏的数据时,尤其是有效和健壮。相关代码将在https://github.com/ideal-idea/sap上找到。
Skeleton-based human action recognition is a longstanding challenge due to its complex dynamics. Some fine-grain details of the dynamics play a vital role in classification. The existing work largely focuses on designing incremental neural networks with more complicated adjacent matrices to capture the details of joints relationships. However, they still have difficulties distinguishing actions that have broadly similar motion patterns but belong to different categories. Interestingly, we found that the subtle differences in motion patterns can be significantly amplified and become easy for audience to distinct through specified view directions, where this property haven't been fully explored before. Drastically different from previous work, we boost the performance by proposing a conceptually simple yet effective Multi-view strategy that recognizes actions from a collection of dynamic view features. Specifically, we design a novel Skeleton-Anchor Proposal (SAP) module which contains a Multi-head structure to learn a set of views. For feature learning of different views, we introduce a novel Angle Representation to transform the actions under different views and feed the transformations into the baseline model. Our module can work seamlessly with the existing action classification model. Incorporated with baseline models, our SAP module exhibits clear performance gains on many challenging benchmarks. Moreover, comprehensive experiments show that our model consistently beats down the state-of-the-art and remains effective and robust especially when dealing with corrupted data. Related code will be available on https://github.com/ideal-idea/SAP .