论文标题
拓扑frobenius代数
Topological Frobenius algebras
论文作者
论文摘要
我们定义了Unital/Counital/Biunital Infitical Infitimal抗对称性双ge和Cofrobenius Bialgebras的概念,并讨论其代数特性。我们还定义了分级2D开放闭合TQFT的概念。这些结构出现在Rabinowitz Floer同源性,Loop空间同源性,量子同源性和有限维歧管的同源性中。通常是无限维度的基础矢量空间属于一类称为泰特矢量空间的拓扑矢量空间。
We define the notions of unital/counital/biunital infinitesimal anti-symmetric bialgebras and coFrobenius bialgebras and discuss their algebraic properties. We also define the notion of a graded 2D open-closed TQFT. These structures arise in Rabinowitz Floer homology, loop space homology, quantum homology, and the homology of finite dimensional manifolds. The underlying vector spaces, which are typically infinite dimensional, belong to a class of topological vector spaces known as Tate vector spaces.