论文标题

降低的符号同源性和次级延续图

Reduced symplectic homology and the secondary continuation map

论文作者

Cieliebak, Kai, Oancea, Alexandru

论文摘要

我们介绍了具有强烈的骨骼骨骼的温斯坦域的概念,并在这种情况下研究了符号同源性的减少版本。在开放式弦案例中,我们介绍了强烈的拉格朗日submanifold的概念,并研究了包装的浮子同源性的简化版本。这些还原的同源性为裤子对产品和裤子对二次共生提供了一个共同的定义结构域,该结合在Unital Intial Infitimal Infitimal抗对称性双子骨的结构中。同源性降低的相关子取决于选择,并且该依赖性由次级延续图控制。降低的同源性和共同体学提供了与产品和共同作用兼容的Rabinowitz Floer同源性的分裂。这些分裂也取决于选择,就像相同的方式。我们提供了足够的条件,次要延续图消失了,从而产生了规范的索引和分裂。

We introduce the notion of a Weinstein domain with strongly R-essential skeleton and study a reduced version of symplectic homology in this context. In the open string case we introduce the notion of a strongly R-essential Lagrangian submanifold and study a reduced version of wrapped Floer homology. These reduced homologies provide a common domain of definition for the pair-of-pants product and for pair-of-pants secondary coproducts, which combine into the structure of a unital infinitesimal anti-symmetric bialgebra. The coproducts on reduced homology depend on choices, and this dependence is controlled by secondary continuation maps. Reduced homology and cohomology provide splittings of Rabinowitz Floer homology which are compatible with the products and the coproducts. These splittings also depend on choices, in the same way as the coproducts. We provide sufficient conditions under which the secondary continuation maps vanish, giving rise to canonical coproducts and splittings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源