论文标题

基于代理的模拟器用于流行性建模:使用较小的模型模拟较大的模型

Agent based simulators for epidemic modelling: Simulating larger models using smaller ones

论文作者

Mittal, Daksh, Juneja, Sandeep, Agrawal, Shubhada

论文摘要

基于代理的模拟器(ABS)是一种流行的流行病学建模工具,用于研究各种非药物干预措施对在城市(或地区)管理流行病的影响。它们提供了灵活性,可以准确地对异构人群进行时间和位置不同,特定于人的互动以及详细的政府流动性限制。通常,为了准确性,每个人都是单独建模的。但是,当城市人口和模拟时间较大时,这可能会使计算时间越来越高。在本文中,我们更深入地研究了局部详细的ABS的潜在概率结构,以使流行病学进行修改,以允许较小的模型(较小的试剂数量)为较大的模型提供准确的统计数据,从而实质上加快了模拟的速度。我们观察到,仅考虑一个较小的聚合模型并扩大输出会导致不准确性。我们利用这样的观察结果,即在初始疾病扩散阶段,起始感染会形成一个或多或少独立于其他树木的感染者的家谱,并且被视为多型超临界分支过程。此外,尽管这种分支过程呈指数增长,但种群类型之间的相对比例迅速稳定。一旦感染了足够多的人,流行病的未来演变就会被其平均场限制与随机起始状态密切近似。我们建立在这些见解的基础上,以开发一种基于移动的,缩放和重新启动的算法,该算法可以使用较小的模型准确地评估ABS的性能,同时仔细减少可能出现的偏见。我们将算法应用于城市中的Covid-19,并通过渐近分析在理论上支持所提出的算法,其中人口大小增加到无穷大。

Agent-based simulators (ABS) are a popular epidemiological modelling tool to study the impact of various non-pharmaceutical interventions in managing an epidemic in a city (or a region). They provide the flexibility to accurately model a heterogeneous population with time and location varying, person-specific interactions as well as detailed governmental mobility restrictions. Typically, for accuracy, each person is modelled separately. This however may make computational time prohibitive when the city population and the simulated time is large. In this paper, we dig deeper into the underlying probabilistic structure of a generic, locally detailed ABS for epidemiology to arrive at modifications that allow smaller models (models with less number of agents) to give accurate statistics for larger ones, thus substantially speeding up the simulation. We observe that simply considering a smaller aggregate model and scaling up the output leads to inaccuracies. We exploit the observation that in the initial disease spread phase, the starting infections create a family tree of infected individuals more-or-less independent of the other trees and are modelled well as a multi-type super-critical branching process. Further, although this branching process grows exponentially, the relative proportions amongst the population types stabilise quickly. Once enough people have been infected, the future evolution of the epidemic is closely approximated by its mean field limit with a random starting state. We build upon these insights to develop a shifted, scaled and restart-based algorithm that accurately evaluates the ABS's performance using a much smaller model while carefully reducing the bias that may otherwise arise. We apply our algorithm for Covid-19 epidemic in a city and theoretically support the proposed algorithm through an asymptotic analysis where the population size increases to infinity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源