论文标题

在存在多个Rashba旋转轨道耦合的情况下,老挝/Sto系统中的半经典旋转运输

Semiclassical spin transport in LaO/STO system in the presence of multiple Rashba spin orbit couplings

论文作者

Kundu, Anirban, Siu, Zhuo Bin, A, Jalil Mansoor B.

论文摘要

LAO/STO系统中的线性和立方自旋轨道耦合与磁矩和移动自旋式载体之间的相互作用为自旋传输应用提供了新的途径。我们使用Boltzmann传输理论基于松弛时间近似(RTA)和更精致的Schliemann-loss(Slta-Postial-Patientation sctionting模型,研究了Linear和Cubic Rashba自旋轨道耦合(RSOC)在老挝/STO系统中的平面磁矩之间的相互作用。通常,当三个RSOC强度之一变化并且其他两种固定时,两种方法都会产生自旋积累(自旋电流)之间的线性(二次)关系。具有不同角度依赖性的多种类型的RSOC的同时存在是破坏费米表面的K空间对称性的关键成分,从而确保在整个费米表面的整合中积累有限的自旋积累。尽管经常使用的RTA方法足以准确地用于自旋积累计算,但旋转电流计算所需的更精致的SL模型是因为RTA方法忽略了由立方RSOC术语引起的费米轮廓的各向异性。基于精制的SL模型和RSOC参数的最佳调整,预计LAO/STO中的自旋电荷转换值将达到30的显着效率。

The interaction between the linear and cubic spin-orbit coupling with magnetic moments and mobile spin-polarized carriers in the LaO/STO system provides new avenues for spin transport applications. We study the interplay between linear and cubic Rashba spin orbit coupling (RSOC) on in-plane magnetic moments in the LaO/STO system using the Boltzmann transport theory based on the relaxation time approximation (RTA) and the more refined Schliemann-Loss (SL) delta-potential scattering model. In general, both methods yield a linear (quadratic) relationship between the spin accumulation (spin current) when one of the three RSOC strengths is varied and the other two fixed. The simultaneous presence of multiple types of RSOC with distinct angular dependences is a key ingredient in breaking the k-space symmetry of the Fermi surface, thus ensuring a finite spin accumulation upon integration over the entire Fermi surface. While the oft-used RTA method is sufficiently accurate for spin accumulation calculations, the more refined SL model is required for spin current calculations because the RTA method neglects the anisotropy of the Fermi contour arising from the cubic RSOC terms. Based on the refined SL model and under optimal tuning of the RSOC parameters, the spin charge conversion values in LaO/STO is predicted to reach a remarkable efficiency of 30.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源