论文标题

直接从望远镜光谱中推论状态参数的中子星方程,并具有不确定性感知机器学习

Deducing Neutron Star Equation of State Parameters Directly From Telescope Spectra with Uncertainty-Aware Machine Learning

论文作者

Farrell, Delaney, Baldi, Pierre, Ott, Jordan, Ghosh, Aishik, Steiner, Andrew W., Kavitkar, Atharva, Lindblom, Lee, Whiteson, Daniel, Weber, Fridolin

论文摘要

中子星为在极端压力和密度下研究物质提供了独特的实验室。尽管没有直接的方法来探索它们的室内结构,但这些恒星发出的X射线可以间接地通过推断恒星的质量和半径来为超义核物质的状态(EOS)方程提供线索。但是,直接从恒星的X射线光谱中推断EOS极具挑战性,并且系统的不确定性变得复杂。当前的艺术状态是在零件方法中使用基于模拟的可能性,首先推断恒星的质量和半径以降低问题的维度,并从这些数量中推断出EOS。我们在现实的不确定性量化和通过机器学习中改善了物理特性的回归方面,展示了对技术状态的一系列增强功能。我们还直接从观察到的恒星的高维光谱中展示了EOS的新推断,从而避免了中间的质量 - 拉迪乌斯步骤。我们的网络基于每个星星的不确定性来源,从而使EOS的不确定性自然而完全传播。

Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method, which first infer the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and improved regression of physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源