论文标题
任务一致的区域内和区域神经歧管估计的概率框架
A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation
论文作者
论文摘要
潜在的流形提供了神经种群活动和整个大脑区域共享可共享性的紧凑特征。尽管如此,就任务变量而言,潜在的潜在可解释性,可提取神经歧管的现有统计工具面临局限性,并且很难在没有试验重复序列的情况下应用于数据集。在这里,我们提出了一个新颖的概率框架,该框架可以在自然主义行为的背景下对人群内部和各个领域的人群变异性进行解释。我们的任务对齐歧管估计(TAME-GP)通过(1)通过(1)将可变性分配到私人和共享来源,(2)使用Poisson噪声模型将变异性分配到私人和共享的来源,以及(3)以先验的形式提出潜在轨迹的时间平滑。这种驯服的GP图形模型允许对局部人群反应中与任务相关的可变性以及大脑区域之间共享可共同可变性的可变性估算。我们证明了我们的估计器在模型内和以生物学动机的模拟数据中的效率。我们还将其应用于猴子的闭环虚拟导航任务中的神经记录,证明了驯服的能力通过单个试验分辨率捕获有意义的区域内和区域内神经变异性。
Latent manifolds provide a compact characterization of neural population activity and of shared co-variability across brain areas. Nonetheless, existing statistical tools for extracting neural manifolds face limitations in terms of interpretability of latents with respect to task variables, and can be hard to apply to datasets with no trial repeats. Here we propose a novel probabilistic framework that allows for interpretable partitioning of population variability within and across areas in the context of naturalistic behavior. Our approach for task aligned manifold estimation (TAME-GP) extends a probabilistic variant of demixed PCA by (1) explicitly partitioning variability into private and shared sources, (2) using a Poisson noise model, and (3) introducing temporal smoothing of latent trajectories in the form of a Gaussian Process prior. This TAME-GP graphical model allows for robust estimation of task-relevant variability in local population responses, and of shared co-variability between brain areas. We demonstrate the efficiency of our estimator on within model and biologically motivated simulated data. We also apply it to neural recordings in a closed-loop virtual navigation task in monkeys, demonstrating the capacity of TAME-GP to capture meaningful intra- and inter-area neural variability with single trial resolution.