论文标题
随机扰动理论:载量量子蒙特卡洛的前传
Stochastic perturbation theory: a prequel to Reptation Quantum Monte Carlo
论文作者
论文摘要
我提出了一种基于拉普拉斯转化和多项式理论的雷利 - schrödinger扰动理论的不同方法,为量子系统非分类基态的能量的扰动扩展产生了迭代表达,这很容易借出本身来符合符号计算。对各种扰动校正的随机解释自然会导致重新启动方案,该方案等同于仓库量子蒙特卡洛,实际上为90年代后期的开发提供了原始动机。
I present a different approach to Rayleigh-Schrödinger perturbation theory, based on Laplace transforms and polynomial theory, yielding an iterative expression for the perturbative expansion of the energy of the non-degenerate ground state of a quantum system, which easily lends itself to symbolic computation. A stochastic interpretation of the various perturbative corrections naturally leads to a re-summation scheme that is equivalent to Reptation Quantum Monte Carlo and that actually provided the original motivation to its development in the late nineties.