论文标题
对象重新安排的多技能移动操作
Multi-skill Mobile Manipulation for Object Rearrangement
论文作者
论文摘要
我们研究了一种模块化方法,可以解决对象重排的长马移动操作任务,该任务将完整的任务分解为一系列子任务。为了解决整个任务,先前的工作将具有点目标导航技能的多个固定操作技巧,这些技巧是通过子任务单独学习的。尽管比单片端到端的RL政策更有效,但该框架遭受了技能链条的复杂错误,例如导航到一个不良位置,在这种情况下,固定的操纵技能无法达到其目标进行操纵。为此,我们建议操纵技巧应包括移动性具有从多个位置与目标对象互动的灵活性,同时导航技能可能具有多个终点,从而导致成功的操纵。我们通过实施移动操纵技能而不是固定技能来实现这些想法,并训练接受区域目标而不是积分目标的导航技能。我们在家庭助理基准(HAB)中评估了3个挑战性的长途移动操纵任务M3,与基线相比,表现出卓越的性能。
We study a modular approach to tackle long-horizon mobile manipulation tasks for object rearrangement, which decomposes a full task into a sequence of subtasks. To tackle the entire task, prior work chains multiple stationary manipulation skills with a point-goal navigation skill, which are learned individually on subtasks. Although more effective than monolithic end-to-end RL policies, this framework suffers from compounding errors in skill chaining, e.g., navigating to a bad location where a stationary manipulation skill can not reach its target to manipulate. To this end, we propose that the manipulation skills should include mobility to have flexibility in interacting with the target object from multiple locations and at the same time the navigation skill could have multiple end points which lead to successful manipulation. We operationalize these ideas by implementing mobile manipulation skills rather than stationary ones and training a navigation skill trained with region goal instead of point goal. We evaluate our multi-skill mobile manipulation method M3 on 3 challenging long-horizon mobile manipulation tasks in the Home Assistant Benchmark (HAB), and show superior performance as compared to the baselines.