论文标题
2D理论的天体振幅
Celestial amplitude for 2d theory
论文作者
论文摘要
我们探索对应于$ 2D $ bulk $ \ Mathcal {s} $矩阵的天体振幅。我们认为具有相同质量的标量粒子,并表明天体振幅成为$ 2D $ $ \ $ \ natercal {s} $ - 矩阵的傅立叶变换。我们将交叉和单位条件转化为天体振幅的条件。对于$ 2D $ SINH-GORDON模型,我们以耦合常数的触及扰动来计算天体振幅,并检查是否满足了天体振幅的交叉和单位条件。将交叉和单位性条件施加到天体振幅中,我们希望从低阶扰动理论中找到较高顺序的幅度,即提供“ \ textit {of textit {原理证明}”,以表明我们可以将bootstrap构想应用于天体振幅。我们发现,施加交叉和单位性条件不足以进行自举振幅,因此有一个额外的术语,无法通过交叉和单位条件来固定。我们还研究了$ 2D $ QFT的重力调味料,用于天体空间中的无质量颗粒,并看到重力穿着的天体振幅,右半平面上的两极被删除几个ansatzes。
We explore celestial amplitude corresponding to $2d$ bulk $\mathcal{S}$-matrix. We consider scalar particles with identical mass and show that the celestial amplitude becomes the fourier transform of the $2d$ $\mathcal{S}$-matrix written in the rapidity variable. We translate the crossing and unitarity conditions into the conditions on the celestial amplitude. For the $2d$ Sinh-Gordon model, we calculate the celestial amplitude perturbatively in coupling constant and check that the crossing and unitarity conditions are satisfied for the celestial amplitude. Imposing the crossing and unitarity conditions to the celestial amplitude, we want to find amplitudes to the higher order in perturbation theory from the lower order i.e., to provide a "\textit{proof of principle}" to show we can apply the bootstrap idea to the celestial amplitude. We find that imposing the crossing and unitarity conditions is not enough for bootstrapping celestial amplitude, there is an extra term which can't be fixed by the crossing and unitarity conditions. We also study the gravitational dressing condition in $2d$ QFT for massless particles in celestial space and see that for the gravitationally dressed celestial amplitude, the poles on the right half-plane get erased for several ansatzes.