论文标题

半监督的可逆神经操作员贝叶斯逆问题

Semi-supervised Invertible Neural Operators for Bayesian Inverse Problems

论文作者

Kaltenbach, Sebastian, Perdikaris, Paris, Koutsourelakis, Phaedon-Stelios

论文摘要

神经操作员提供了一个功能强大的数据驱动工具,用于求解参数PDE,因为它们可以表示无限维函数空间之间的地图。在这项工作中,我们在高维的贝叶斯逆问题的背景下采用了物理知识的神经操作员。传统的解决方案策略需要大量且不可行的远期模型求解以及参数衍生物的计算。为了启用有效的解决方案,我们通过使用RealnVP体系结构来扩展深度运算符网络(DeepOnets),该体系结构在参数输入和分支网络输出之间产生可逆且可区分的映射。这使我们能够构建完整后部的准确近似值,而与观察噪声的数量和观测噪声的幅度无关,而无需任何额外的正向解决方案,也不需要繁琐的迭代抽样程序。我们证明了在三个基准的反问题背景下提出方法的功效和准确性:一种抗衍生方程,反应扩散动力学和通过多孔介质的流动。

Neural Operators offer a powerful, data-driven tool for solving parametric PDEs as they can represent maps between infinite-dimensional function spaces. In this work, we employ physics-informed Neural Operators in the context of high-dimensional, Bayesian inverse problems. Traditional solution strategies necessitate an enormous, and frequently infeasible, number of forward model solves, as well as the computation of parametric derivatives. In order to enable efficient solutions, we extend Deep Operator Networks (DeepONets) by employing a RealNVP architecture which yields an invertible and differentiable map between the parametric input and the branch-net output. This allows us to construct accurate approximations of the full posterior, irrespective of the number of observations and the magnitude of the observation noise, without any need for additional forward solves nor for cumbersome, iterative sampling procedures. We demonstrate the efficacy and accuracy of the proposed methodology in the context of inverse problems for three benchmarks: an anti-derivative equation, reaction-diffusion dynamics and flow through porous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源