论文标题
杨米尔斯振幅的天体liouville理论
Celestial Liouville Theory for Yang-Mills Amplitudes
论文作者
论文摘要
我们认为杨米尔斯理论的耦合常数和theta角由动态(复杂)DILATON场的真空期望值确定。我们在存在非平凡的背景dilaton场的情况下讨论树级N-Gluon MHV散射幅度,并通过将Mellin相对于LightCone能量进行转化来构建相应的天体振幅。通过这种方式,我们获得了天体上主要场的二维CFT相关因子。我们表明,在存在球形DILATON冲击波的情况下评估的天阳米尔斯振幅是由将原始野外操作员的相关函数分解为全态电流操作员时的相关函数,该函数是“轻” liouville oberators。它们以liouville理论的半经典极限(无限中央电荷的极限)进行评估,并由古典liouville领域确定,该领域描述了天体领域的指标。
We consider Yang-Mills theory with the coupling constant and theta angle determined by the vacuum expectation values of a dynamical (complex) dilaton field. We discuss the tree-level N-gluon MHV scattering amplitudes in the presence of a nontrivial background dilaton field and construct the corresponding celestial amplitudes by taking Mellin transforms with respect to the lightcone energies. In this way, we obtain two-dimensional CFT correlators of primary fields on the celestial sphere. We show that the celestial Yang-Mills amplitudes evaluated in the presence of a spherical dilaton shockwave are given by the correlation functions of primary field operators factorized into the holomorphic current operators times the "light" Liouville operators. They are evaluated in the semiclassical limit of Liouville theory (the limit of infinite central charge) and are determined by the classical Liouville field describing metrics on the celestial sphere.