论文标题

深度学习辅助优化对单2D线图的3D重建

Deep Learning Assisted Optimization for 3D Reconstruction from Single 2D Line Drawings

论文作者

Zheng, Jia, Zhu, Yifan, Wang, Kehan, Zou, Qiang, Zhou, Zihan

论文摘要

在本文中,我们重新审视了从单线图中自动重建3D对象的长期问题。以前的基于优化的方法可以生成紧凑而准确的3D模型,但是它们的成功率在很大程度上取决于(i)确定一组真正的真正几何约束的能力,以及(ii)为数值优化选择一个良好的初始值。鉴于这些挑战,我们建议训练深层神经网络,以检测3D对象中几何实体(即边缘)之间的成对关系,并预测顶点的初始深度值。我们在大型CAD模型数据集上的实验表明,通过利用几何约束解决管道中的深度学习,基于优化的3D重建的成功率可以显着提高。

In this paper, we revisit the long-standing problem of automatic reconstruction of 3D objects from single line drawings. Previous optimization-based methods can generate compact and accurate 3D models, but their success rates depend heavily on the ability to (i) identifying a sufficient set of true geometric constraints, and (ii) choosing a good initial value for the numerical optimization. In view of these challenges, we propose to train deep neural networks to detect pairwise relationships among geometric entities (i.e., edges) in the 3D object, and to predict initial depth value of the vertices. Our experiments on a large dataset of CAD models show that, by leveraging deep learning in a geometric constraint solving pipeline, the success rate of optimization-based 3D reconstruction can be significantly improved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源