论文标题

通过矢量符号体系结构的不配合图像翻译

Unpaired Image Translation via Vector Symbolic Architectures

论文作者

Theiss, Justin, Leverett, Jay, Kim, Daeil, Prakash, Aayush

论文摘要

图像到图像翻译在启用计算机视觉的合成数据方面发挥了重要作用。但是,如果源和目标域具有较大的语义不匹配,那么现有技术通常会遭受源内容损坏(又称语义翻转)。为了解决这个问题,我们提出了一个新的范式,用于使用向量符号体系结构(VSA)进行图像到图像翻译,这是一个理论框架,该框架定义了在高维矢量(Hyperyvector)空间中定义代数操作的理论框架。我们通过学习过度向量映射来颠倒翻译以确保与源内容的一致性,从而介绍了基于VSA的对抗学习的约束,以实现源至目标翻译。我们在定性和定量上都表明我们的方法比其他最先进的技术有所改善。

Image-to-image translation has played an important role in enabling synthetic data for computer vision. However, if the source and target domains have a large semantic mismatch, existing techniques often suffer from source content corruption aka semantic flipping. To address this problem, we propose a new paradigm for image-to-image translation using Vector Symbolic Architectures (VSA), a theoretical framework which defines algebraic operations in a high-dimensional vector (hypervector) space. We introduce VSA-based constraints on adversarial learning for source-to-target translations by learning a hypervector mapping that inverts the translation to ensure consistency with source content. We show both qualitatively and quantitatively that our method improves over other state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源