论文标题

宇宙学中遗传算法优化的神经网络

Neural Networks Optimized by Genetic Algorithms in Cosmology

论文作者

Gómez-Vargas, Isidro, Andrade, Joshua Briones, Vázquez, J. Alberto

论文摘要

在过去的十年中,人工神经网络在宇宙学领域的应用已成功发光,这是由于它们具有对大量数据集和复杂非线性功能进行建模的巨大能力。但是,在某些情况下,它们的使用仍然存在争议,因为当未仔细选择超参数时,它们易于产生不准确的结果。在本文中,为了找到超参数与人工神经网络的最佳组合,我们建议利用遗传算法。作为概念的证明,我们分析了三种不同的宇宙学案例,以测试用遗传算法实现的架构的性能,并将它们与标准过程进行比较,包括与所有可能的配置的网格组成。首先,我们使用IA型超新星汇编对距离模量进行独立的模型重建。其次,神经网络学会了推断典型模型的状态方程,最后随着来自红移目录的数据,神经网络预测了给定六个光度频段(uggizy)的光度红移。我们发现,遗传算法大大改善了神经网络体系结构的产生,这可以确保对其物理结果的信心,因为相对于网格方法的指标表现更好。

The applications of artificial neural networks in the cosmological field have shone successfully during the past decade, this is due to their great ability of modeling large amounts of datasets and complex nonlinear functions. However, in some cases, their use still remains controversial because their ease of producing inaccurate results when the hyperparameters are not carefully selected. In this paper, to find the optimal combination of hyperparameters to artificial neural networks, we propose to take advantage of the genetic algorithms. As a proof of the concept, we analyze three different cosmological cases to test the performance of the architectures achieved with the genetic algorithms and compare them with the standard process, consisting of a grid with all possible configurations. First, we carry out a model-independent reconstruction of the distance modulus using a type Ia supernovae compilation. Second, the neural networks learn to infer the equation of state for the quintessence model, and finally with the data from a combined redshift catalog the neural networks predict the photometric redshift given six photometric bands (urgizy). We found that the genetic algorithms improve considerably the generation of the neural network architectures, which can ensure more confidence in their physical results because of the better performance in the metrics with respect to the grid method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源