论文标题

硬件软件的统计和深度学习框架共同设计,用于芯片上Zynq系统上的宽带传感

Hardware Software Co-design of Statistical and Deep Learning Frameworks for Wideband Sensing on Zynq System on Chip

论文作者

Rajesh, Rohith, Darak, Sumit J., Jain, Akshay, Chandhok, Shivam, Sharma, Animesh

论文摘要

随着在下一代网络中引入频谱共享和异质服务,基站需要感知宽带光谱并确定频谱资源以满足服务质量,带宽和延迟限制。亚nyquist采样(SNS)可实现稀疏宽带光谱的数字化,而无需Nyquist速度类似于数字转换器。但是,SNS需要用于频谱重建的其他信号处理算法,例如众所周知的正交匹配追踪(OMP)算法。 OMP也广泛用于其他压缩传感应用中。这项工作的第一个贡献是有效地绘制了由ARM处理器和FPGA组成的ZYNQ系统(ZSOC)上的OMP算法。实验分析表明,稀疏光谱的OMP性能有显着降解。此外,OMP需要对频谱稀疏性的先验知识。我们通过基于深度学习的体系结构来解决这些挑战,并在ZSOC平台上有效地将它们作为第二个贡献。通过硬件软件共同设计,考虑了通过在软件(ARM处理器)和硬件(FPGA)之间分区获得的不同版本的构建结构。为这些体系结构提供了给定内存约束和多种单词长度的资源,功率和执行时间比较。

With the introduction of spectrum sharing and heterogeneous services in next-generation networks, the base stations need to sense the wideband spectrum and identify the spectrum resources to meet the quality-of-service, bandwidth, and latency constraints. Sub-Nyquist sampling (SNS) enables digitization for sparse wideband spectrum without needing Nyquist speed analog-to-digital converters. However, SNS demands additional signal processing algorithms for spectrum reconstruction, such as the well-known orthogonal matching pursuit (OMP) algorithm. OMP is also widely used in other compressed sensing applications. The first contribution of this work is efficiently mapping the OMP algorithm on the Zynq system-on-chip (ZSoC) consisting of an ARM processor and FPGA. Experimental analysis shows a significant degradation in OMP performance for sparse spectrum. Also, OMP needs prior knowledge of spectrum sparsity. We address these challenges via deep-learning-based architectures and efficiently map them on the ZSoC platform as second contribution. Via hardware-software co-design, different versions of the proposed architecture obtained by partitioning between software (ARM processor) and hardware (FPGA) are considered. The resource, power, and execution time comparisons for given memory constraints and a wide range of word lengths are presented for these architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源