论文标题

深度滤清器银行回归,用于各向异性MR大脑图像的超分辨率

Deep filter bank regression for super-resolution of anisotropic MR brain images

论文作者

Remedios, Samuel W., Han, Shuo, Xue, Yuan, Carass, Aaron, Tran, Trac D., Pham, Dzung L., Prince, Jerry L.

论文摘要

在2D多板磁共振(MR)采集中,整个平面信号通常比平面信号低分辨率。尽管当代超分辨率(SR)方法旨在恢复基本的高分辨率量,但估计的高频信息是通过端到端数据驱动的培训隐含的,而不是明确说明和寻求。为了解决这个问题,我们根据完美的重建过滤库重新构架SR问题声明,使我们能够识别并直接估计丢失的信息。在这项工作中,我们提出了一种两阶段的方法,以近似于与特定扫描的各向异性获取相对应的完美重建过滤器库的完成。在第1阶段,我们使用梯度下降估算缺失的过滤器,在第2阶段,我们使用深网来学习从粗系数到详细系数的映射。此外,所提出的公式不依赖外部训练数据,从而规避了对域转移校正的需求。在我们的方法下,特别是在“切片差距”方案中提高了SR性能,这可能是由于框架施加的解决方案空间的限制。

In 2D multi-slice magnetic resonance (MR) acquisition, the through-plane signals are typically of lower resolution than the in-plane signals. While contemporary super-resolution (SR) methods aim to recover the underlying high-resolution volume, the estimated high-frequency information is implicit via end-to-end data-driven training rather than being explicitly stated and sought. To address this, we reframe the SR problem statement in terms of perfect reconstruction filter banks, enabling us to identify and directly estimate the missing information. In this work, we propose a two-stage approach to approximate the completion of a perfect reconstruction filter bank corresponding to the anisotropic acquisition of a particular scan. In stage 1, we estimate the missing filters using gradient descent and in stage 2, we use deep networks to learn the mapping from coarse coefficients to detail coefficients. In addition, the proposed formulation does not rely on external training data, circumventing the need for domain shift correction. Under our approach, SR performance is improved particularly in "slice gap" scenarios, likely due to the constrained solution space imposed by the framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源