论文标题

在稀疏网络密集的子图上的非背部核心位置的定位

Localization of nonbacktracking centrality on dense subgraphs of sparse networks

论文作者

Timár, G., Dorogovtsev, S. N., Mendes, J. F. F.

论文摘要

非后卫跟踪矩阵以及相关的非背面中心(NBC)在网络上的渗透型过程的模型中起着至关重要的作用,例如非持续流行的流行病。在这里,我们研究了NBC在包含任意有限子图的无限稀疏网络中的定位。假设封闭网络的局部树木风格,并且从有限的子图中发出的分支不会在有限的距离上相交,我们表明,复合网络的非背部特征矩阵的特征值等于两个最大的特征值中最高的特征元素:有限的子格网络的最高。在局部状态下,当子图的最大特征值是两者中最高的特征值时,我们会在网络中的子绘图和其他节点中的NBC中获得显式表达式。在这种状态下,非后卫跟踪中心性集中在封闭网络中的子图及其附近的附近。在封闭网络不相关的情况下,我们获得了简单,精确的公式。我们发现,平均NBC在有限子图周围呈指数衰减,该速率与封闭网络的结构无关,与邻接矩阵主要特征向量的定位相反。数值模拟证实,即使以中等大小的,循环的现实世界网络,我们的结果也提供了良好的近似值。

The nonbacktracking matrix, and the related nonbacktracking centrality (NBC) play a crucial role in models of percolation-type processes on networks, such as non-recurrent epidemics. Here we study the localization of NBC in infinite sparse networks that contain an arbitrary finite subgraph. Assuming the local tree-likeness of the enclosing network, and that branches emanating from the finite subgraph do not intersect at finite distances, we show that the largest eigenvalue of the nonbacktracking matrix of the composite network is equal to the highest of the two largest eigenvalues: that of the finite subgraph and of the enclosing network. In the localized state, when the largest eigenvalue of the subgraph is the highest of the two, we derive explicit expressions for the NBCs of nodes in the subgraph and other nodes in the network. In this state, nonbacktracking centrality is concentrated on the subgraph and its immediate neighbourhood in the enclosing network. We obtain simple, exact formulas in the case where the enclosing network is uncorrelated. We find that the mean NBC decays exponentially around the finite subgraph, at a rate which is independent of the structure of the enclosing network, contrary to what was found for the localization of the principal eigenvector of the adjacency matrix. Numerical simulations confirm that our results provide good approximations even in moderately sized, loopy, real-world networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源