论文标题
使用深CCA神经数据正常化程序提高CNN的准确性和鲁棒性
Improving the Accuracy and Robustness of CNNs Using a Deep CCA Neural Data Regularizer
论文作者
论文摘要
随着卷积神经网络(CNN)在对象识别方面变得更加准确,它们的表示与灵长类动物的视觉系统越来越相似。这一发现激发了我们和其他研究人员询问该含义是否也以另一种方式运行:如果CNN表示更像大脑,网络会变得更加准确吗?以前解决这个问题的尝试显示出非常适中的准确性,部分原因是正规化方法的局限性。为了克服这些局限性,我们开发了一种新的CNN神经数据正常化程序,该神经数据正常化程序使用深层规范相关分析(DCCA)来优化CNN图像表示与猴子视觉皮层的相似之处。使用这种新的神经数据正常化程序,与先前的最新神经数据正则化器相比,我们看到分类准确性和少级精度的性能提高得多。这些网络对对抗性攻击也比未注册的攻击更强大。这些结果共同证实,神经数据正则化可以提高CNN的性能,并引入了一种获得更大性能提升的新方法。
As convolutional neural networks (CNNs) become more accurate at object recognition, their representations become more similar to the primate visual system. This finding has inspired us and other researchers to ask if the implication also runs the other way: If CNN representations become more brain-like, does the network become more accurate? Previous attempts to address this question showed very modest gains in accuracy, owing in part to limitations of the regularization method. To overcome these limitations, we developed a new neural data regularizer for CNNs that uses Deep Canonical Correlation Analysis (DCCA) to optimize the resemblance of the CNN's image representations to that of the monkey visual cortex. Using this new neural data regularizer, we see much larger performance gains in both classification accuracy and within-super-class accuracy, as compared to the previous state-of-the-art neural data regularizers. These networks are also more robust to adversarial attacks than their unregularized counterparts. Together, these results confirm that neural data regularization can push CNN performance higher, and introduces a new method that obtains a larger performance boost.