论文标题
MMWave无细胞大型MIMO网络中的软切换程序
Soft Handover Procedures in mmWave Cell-Free Massive MIMO Networks
论文作者
论文摘要
本文考虑了MMWave无单元的大规模MIMO(多输入多输出)网络,该网络由大量地理分布的访问点(APS)组成,同时通过连贯的关节传输服务多个用户设备(UES)。我们通过不完美的渠道状态信息(CSI)和试点培训来解决下行链路(DL)中的UE移动性。考虑到UE机动性,提出了将传统的移交概念扩展到无细胞网络的挑战性AP-EAP关联策略,用于联合试点分配和集群形成的分布式算法和集群形成。该算法提供了一个系统的过程,用于初始访问和更新服务APS,并为每个UE分配的试验序列。主要目标是限制AP和试点变化的必要数量,同时限制计算复杂性。我们根据光谱效率(SE)评估了性能,并具有最大的比率和正规化的零孔预编码。结果表明,我们提出的分布式算法有效地确定了与最先进的计算时间相比,计算时间较低的基本AP-EUSESSISS改进。与超密集网络(UDN)相比,它还提供了平均试点变化数量的明显降低。此外,我们制定了改进的试点分配程序,以促进在高度负载的方案中大量访问网络的机会。
This paper considers a mmWave cell-free massive MIMO (multiple-input multiple-output) network composed of a large number of geographically distributed access points (APs) simultaneously serving multiple user equipments (UEs) via coherent joint transmission. We address UE mobility in the downlink (DL) with imperfect channel state information (CSI) and pilot training. Aiming at extending traditional handover concepts to the challenging AP-UE association strategies of cell-free networks, distributed algorithms for joint pilot assignment and cluster formation are proposed in a dynamic environment considering UE mobility. The algorithms provide a systematic procedure for initial access and update of the serving APs and assigned pilot sequence to each UE. The principal goal is to limit the necessary number of AP and pilot changes, while limiting computational complexity. We evaluate the performance, in terms of spectral efficiency (SE), with maximum ratio and regularized zero-forcing precoding. Results show that our proposed distributed algorithms effectively identify the essential AP-UE association refinements with orders-of-magnitude lower computational time compared to the state-of-the-art. It also provides a significantly lower average number of pilot changes compared to an ultra-dense network (UDN). Moreover, we develop an improved pilot assignment procedure that facilitates massive access to the network in highly loaded scenarios.