论文标题
在大麦芽云和小麦哲伦云中建模发光Superoft X射线源的多大波长度
Multiwavelength modeling the SED of Luminous Supersoft X-ray Sources in Large Magellanic Cloud and Small Magellanic Cloud
论文作者
论文摘要
经典的超级X射线源(SSS)被理解为近距离二进制系统,在其同伴中,巨大的白色矮人(WD)积聚,以维持其表面产生的碳渗透压为$ 10^{36} {36} -2} -2 \ times10^38} {38} $ erg/s的表面产生的碳渗透压的稳定氢。在这里,我们首次对LMC和SMC中最亮的SSSS进行全球超级X射线射线至近红外(NIR)光谱能量分布(SED)。我们测试了一个模型,其中紫外线由紧凑型(未解决的)星形星云占主导地位。 SED模型对应于SSSS的发光度几次$ 10^{38} -10^{39} $ erg/s,在黑体温度下散发出$ \ 3 \ times 10^{5} $ k,并指示n n n $ \ gtrsim 2 \ gtrsim 2 \ gtrsim 2 \ gtrsim 2 \ gtrsim consementum,以$ \ gtrsim 2 \ times 10^{ - 6} $ $ m _ {\ odot} \,{\ rm yr}^{ - 1} $。这样的极端参数表明,最亮的SSS可能是在Nova后的SSS状态下是未识别的光学Novae,该状态在高持久的亮度上持续使用,可能是通过恢复的积聚,可能是超级 - 埃德丁顿的速率。需要新的观察结果和SSS全局SED的理论多波长建模,以可靠地确定其参数,从而了解其在恒星进化中的适当阶段。
Classical supersoft X-ray sources (SSSs) are understood as close binary systems in which a massive white dwarf (WD) accretes from its companion at rates sustaining steady hydrogen burning on its surface generating bolometric luminosities of $10^{36}-2\times10^{38}$ erg/s. Here, we perform for the first time the global supersoft X-rays to near-infrared (NIR) spectral energy distribution (SED) for the brightest SSSs in LMC and SMC. We test a model in which the ultraviolet--NIR is dominated by the emission from a compact (unresolved) circumstellar nebula represented by the ionized gas out-flowing from the SSS. The SED models correspond to luminosities of SSSs a few times $10^{38}-10^{39}$ erg/s, radiating at blackbody temperatures of $\approx 3\times 10^{5}$ K, and indicate nebular continuum, whose emission measure of $\gtrsim 2\times10^{60}$ cm$^{-3}$ corresponds to a wind mass-loss at rates $\gtrsim 2\times 10^{-6}$ $M_{\odot}\,{\rm yr}^{-1}$. Such extreme parameters suggest that the brightest SSSs could be unidentified optical novae in a post-nova SSS state sustained at a high long-lasting luminosity by resumed accretion, possibly at super-Eddington rates. New observations and theoretical multiwavelength modeling of the global SED of SSSs are needed to reliably determine their parameters, and thus understand their proper stage in stellar evolution.