论文标题
追踪使用HC $^{17} $ o $^+$ $ $ j $ = 1-0排放的固有核心L1544的收缩
Tracing the contraction of the pre-stellar core L1544 with HC$^{17}$O$^+$ $J$ = 1-0 emission
论文作者
论文摘要
观察到的几个分子的光谱线谱图朝向前的核心L1544看来是双峰的。对于丰富的分子物种,这种线形态与自我吸收有关。但是,对于较少丰富的物种的双峰形态背后的物理过程仍在争论中。为了理解光学薄过渡的双峰光谱的原因及其与固有核心物理结构的联系,我们提出了高敏感性和高光谱分辨率HC $^{17} $ o $ $ $^+$ $ $ $ J = $ 1-0观察到L1544中的灰尘峰值。我们观察到Hc $^{17} $ o $^+$(1-0)频谱与放射性毫米级毫米(IRAM)3000万望远镜。通过使用新的最先进的碰撞速率系数,核心的物理模型以及HC $^{17} $ O $ $^+$的分数丰度曲线,该分子离子的超细结构首次使用辐射转移代码应用于合同预先使用前核心的预测化学结构的辐射转移代码。我们将相同的分析应用于化学相关的c $^{17} $ o分子。观察到的HC $^{17} $ o $^+$(1-0)和C $^{17} $ O(1-0)线已通过非本地热平衡(LTE)辐射转移模型成功地复制,用于用于合同预固定核心的化学模型预测。需要一个高尺度的速度配置文件(30%)来复制HC $^{17} $ o $ $^+$(1-0)观察。在HC $^{17} $ o $^+$(1-0)中观察到的双峰是由于收缩动作的密度接近过渡的临界密度($ \ sim $ 10 $^{5} $ cm $ $ $ $^{ - 3} $)以及hco $^abco $^{+abund的事实。
Spectral line profiles of several molecules observed towards the pre-stellar core L1544 appear double-peaked. For abundant molecular species this line morphology has been linked to self-absorption. However, the physical process behind the double-peaked morphology for less abundant species is still under debate. In order to understand the cause behind the double-peaked spectra of optically thin transitions and their link to the physical structure of pre-stellar cores, we present high-sensitivity and high-spectral resolution HC$^{17}$O$^+$ $J =$1-0 observations towards the dust peak in L1544. We observed the HC$^{17}$O$^+$ (1-0) spectrum with the Institut de Radioastronomie Millimétrique (IRAM) 30m telescope. By using new state-of-the-art collisional rate coefficients, a physical model for the core and the fractional abundance profile of HC$^{17}$O$^+$, the hyperfine structure of this molecular ion is modelled for the first time with the radiative transfer code LOC applied to the predicted chemical structure of a contracting pre-stellar core. We applied the same analysis to the chemically related C$^{17}$O molecule. The observed HC$^{17}$O$^+$(1-0) and C$^{17}$O(1-0) lines have been successfully reproduced with a non-local thermal equilibrium (LTE) radiative transfer model applied to chemical model predictions for a contracting pre-stellar core. An upscaled velocity profile (by 30%) is needed to reproduce the HC$^{17}$O$^+$(1-0) observations. The double peaks observed in the HC$^{17}$O$^+$(1-0) hyperfine components are due to the contraction motions at densities close to the critical density of the transition ($\sim$10$^{5}$ cm$^{-3}$) and to the fact that the HCO$^{+}$ fractional abundance decreases toward the centre.