论文标题
用于运动伪影分类和心脏磁共振图像分割的多任务丝线变压器
Multi-task Swin Transformer for Motion Artifacts Classification and Cardiac Magnetic Resonance Image Segmentation
论文作者
论文摘要
心脏磁共振成像通常用于评估心脏解剖结构和功能。左室和右心室血池和左心室心肌的描述对于诊断心脏疾病很重要。不幸的是,在CMR采集程序中,患者的运动可能导致最终图像中出现的运动伪像。这种伪像降低了CMR图像的诊断质量并重做了该过程的力。在本文中,我们提出了一个多任务SWIN UNET变压器网络,用于在CMRXMOTION挑战中同时解决两个任务:CMR分割和运动伪像分类。我们将细分和分类作为多任务学习方法,使我们能够确定CMR的诊断质量并同时生成口罩。 CMR图像分为三个诊断质量类别,而所有具有非严重运动伪像的样本都被分割。使用5倍交叉验证训练的五个网络的集合达到了骰子系数为0.871的分割性能,分类精度为0.595。
Cardiac Magnetic Resonance Imaging is commonly used for the assessment of the cardiac anatomy and function. The delineations of left and right ventricle blood pools and left ventricular myocardium are important for the diagnosis of cardiac diseases. Unfortunately, the movement of a patient during the CMR acquisition procedure may result in motion artifacts appearing in the final image. Such artifacts decrease the diagnostic quality of CMR images and force redoing of the procedure. In this paper, we present a Multi-task Swin UNEt TRansformer network for simultaneous solving of two tasks in the CMRxMotion challenge: CMR segmentation and motion artifacts classification. We utilize both segmentation and classification as a multi-task learning approach which allows us to determine the diagnostic quality of CMR and generate masks at the same time. CMR images are classified into three diagnostic quality classes, whereas, all samples with non-severe motion artifacts are being segmented. Ensemble of five networks trained using 5-Fold Cross-validation achieves segmentation performance of DICE coefficient of 0.871 and classification accuracy of 0.595.