论文标题

实例攻击:基于解释的漏洞分析框架针对恶意软件检测的DNN

Instance Attack:An Explanation-based Vulnerability Analysis Framework Against DNNs for Malware Detection

论文作者

RuiJin, Sun, ShiZe, Guo, JinHong, Guo, ChangYou, Xing, LuMing, Yang, Xi, Guo, ZhiSong, Pan

论文摘要

深度神经网络(DNN)越来越多地应用于恶意软件检测中,其鲁棒性已广泛争论。传统上,对抗性示例生成方案依赖于详细的模型信息(基于梯度的方法)或许多样本来训练替代模型,在大多数情况下,这些模型都不可用。 我们提出了基于实例的攻击的概念。我们的计划是可解释的,可以在黑箱环境中起作用。给定一个特定的二进制示例和恶意软件分类器,我们使用数据增强策略来生成足够的数据,我们可以从中训练一个简单的可解释模型。我们通过显示特定二进制的不同部分的重量来解释检测模型。通过分析解释,我们发现数据小节在Windows PE恶意软件检测中起重要作用。我们提出了一个新函数,该函数保留了可以应用于数据子小节的转换算法。通过采用我们提出的二进制多样化技术,我们消除了最加权部分以产生对抗性例子的影响。在某些情况下,我们的算法可以欺骗DNN,成功率接近100 \%。我们的方法的表现优于最新方法。最重要的方面是我们的方法在黑框设置中运行,并且可以通过域知识来验证结果。我们的分析模型可以帮助人们改善恶意软件探测器的鲁棒性。

Deep neural networks (DNNs) are increasingly being applied in malware detection and their robustness has been widely debated. Traditionally an adversarial example generation scheme relies on either detailed model information (gradient-based methods) or lots of samples to train a surrogate model, neither of which are available in most scenarios. We propose the notion of the instance-based attack. Our scheme is interpretable and can work in a black-box environment. Given a specific binary example and a malware classifier, we use the data augmentation strategies to produce enough data from which we can train a simple interpretable model. We explain the detection model by displaying the weight of different parts of the specific binary. By analyzing the explanations, we found that the data subsections play an important role in Windows PE malware detection. We proposed a new function preserving transformation algorithm that can be applied to data subsections. By employing the binary-diversification techniques that we proposed, we eliminated the influence of the most weighted part to generate adversarial examples. Our algorithm can fool the DNNs in certain cases with a success rate of nearly 100\%. Our method outperforms the state-of-the-art method . The most important aspect is that our method operates in black-box settings and the results can be validated with domain knowledge. Our analysis model can assist people in improving the robustness of malware detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源