论文标题
在更高维度中重建顶点代数
Reconstruction of vertex algebras in even higher dimensions
论文作者
论文摘要
较高维度的顶点代数对应于具有整体保形不变性的量子场理论模型。维数D中的任何顶点代数d都在任何较低的维度,尤其是尺寸的限制限制对顶点代数的限制。在d均为d的情况下,我们发现可以在这种情况下进行匡威通道。这些条件包括具有正能量的共形谎言代数的统一作用,该代数由局部内态性给出,并遵守某些整合性特性。
Vertex algebras in higher dimensions correspond to models of quantum field theory with global conformal invariance. Any vertex algebra in dimension D admits a restriction to a vertex algebra in any lower dimension and, in particular, to dimension one. In the case when D is even, we find natural conditions under which the converse passage is possible. These conditions include a unitary action of the conformal Lie algebra with a positive energy, which is given by local endomorphisms and obeys certain integrability properties.