论文标题

自动传染病分类分析与概念发现

Automatic Infectious Disease Classification Analysis with Concept Discovery

论文作者

Sizikova, Elena, Vendrow, Joshua, Cao, Xu, Grotheer, Rachel, Haddock, Jamie, Kassab, Lara, Kryshchenko, Alona, Merkh, Thomas, Madushani, R. W. M. A., Moise, Kenny, Ulichney, Annie, Vo, Huy V., Wang, Chuntian, Coffee, Megan, Leonard, Kathryn, Needell, Deanna

论文摘要

来自图像的自动传染病分类可以促进所需的医学诊断。这种方法可以鉴定出诸如结核病之类的疾病,这些疾病由于资源限制以及新颖和新兴疾病而被诊断出来,例如蒙基托克斯(Monkeypox),临床医生在诊断方面几乎没有经验或敏锐度。避免错过或延迟诊断将阻止进一步传播并改善临床结果。为了理解和信任神经网络预测,对学习表示的分析是必要的。在这项工作中,我们认为自动发现概念,即人类可解释的属性,可以深入了解医学图像分析任务中学习的信息,从而超越培训标签或协议。我们提供了医学图像和计算机视觉社区中现有概念发现方法的概述,并评估了关于结核病(TB)预测和Monkeypox预测任务的代表性方法。最后,我们提出了NMFX,这是一种通过概念发现对可解释性的一般表述,该发现以统一的方式在无监督,弱监督和受监督的场景中起作用。

Automatic infectious disease classification from images can facilitate needed medical diagnoses. Such an approach can identify diseases, like tuberculosis, which remain under-diagnosed due to resource constraints and also novel and emerging diseases, like monkeypox, which clinicians have little experience or acumen in diagnosing. Avoiding missed or delayed diagnoses would prevent further transmission and improve clinical outcomes. In order to understand and trust neural network predictions, analysis of learned representations is necessary. In this work, we argue that automatic discovery of concepts, i.e., human interpretable attributes, allows for a deep understanding of learned information in medical image analysis tasks, generalizing beyond the training labels or protocols. We provide an overview of existing concept discovery approaches in medical image and computer vision communities, and evaluate representative methods on tuberculosis (TB) prediction and monkeypox prediction tasks. Finally, we propose NMFx, a general NMF formulation of interpretability by concept discovery that works in a unified way in unsupervised, weakly supervised, and supervised scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源