论文标题
独特的双基础扩展
Unique double base expansions
论文作者
论文摘要
对于两个真实基础$ q_0,q_1> 1 $,我们考虑$ \ sum_ {k = 1}^{\ infty} i_k/(q_ {i_1} q_ {i_2} {i_2} \ cdots q_ {i_k})$ with $ i_k \ in \ in \ in \ in \ in \ in \ in \ in \ in \ in, $(q_0,q_1)$ - 扩展。序列$(i_k)$称为唯一$(q_0,q_1)$ - 扩展如果所有其他序列都具有不同的值,则为$(q_0,q_1)$ - 扩展,以及一组唯一的$(q_0,q_1,q_1)$ - 扩展由$ u_ {q_0,q_1} $表示。在特殊情况下,$ q_0 = q_1 = q $,如果$ q $低于黄金比率,则设置$ u_ {q,q} $是微不足道的,如果$ q $高于komornik-loreti常数,则无数。与非客气$ u_ {q_1} $的曲线分隔基本对$(q_0,q_1)$,带有微不足道的$ u_ {q_1} $,是函数$ \ nathcal {g}(q_0)$的曲线。同样,曲线分离对$(q_0,q_1)$,可计数$ u_ {q_1,q_1} $与那些具有无数$ u_ {q_1} $的人的图形是函数$ \ nathcal {k}(k}(q_0)$的图形,我们称之为我们称之为generalized komornik-loreti nonstant。我们表明,这两条曲线在$ q_0 $和$ q_1 $中是对称的,$ \ mathcal {g} $和$ \ Mathcal {k} $是连续的,严格降低,因此几乎在$(1,\ infty)$的$(1,\ infty)$上差异,以及$ q_0 $ q_0 $ q_0 $ q_0 $ q_0 $ q_0 $ q_0 $ q_0 $ q_0 $ $ \ MATHCAL {G}(Q_0)= \ Mathcal {K}(Q_0)$为零。我们使用$ \ Mathcal {g}(q_0)$和$ \ Mathcal {k}(q_0)$的公式,用于所有$ q_0> 1 $,使用二进制二进制乘坐词法间隔的特征是微不足道的,可计数的,可计数,无可计算,无需零词,并且与阳性呈阳性无关。我们的特征在包括Sturmian和Thue-Morse序列在内的$ s $ - 多序列方面比Labarca和Moreira(2006)以及Glendinning和Sidorov(2015)更简单,并且与其他开放的动态系统也相关。
For two real bases $q_0, q_1 > 1$, we consider expansions of real numbers of the form $\sum_{k=1}^{\infty} i_k/(q_{i_1}q_{i_2}\cdots q_{i_k})$ with $i_k \in \{0,1\}$, which we call $(q_0,q_1)$-expansions. A sequence $(i_k)$ is called a unique $(q_0,q_1)$-expansion if all other sequences have different values as $(q_0,q_1)$-expansions, and the set of unique $(q_0,q_1)$-expansions is denoted by $U_{q_0,q_1}$. In the special case $q_0 = q_1 = q$, the set $U_{q,q}$ is trivial if $q$ is below the golden ratio and uncountable if $q$ is above the Komornik--Loreti constant. The curve separating pairs of bases $(q_0, q_1)$ with trivial $U_{q_0,q_1}$ from those with non-trivial $U_{q_0,q_1}$ is the graph of a function $\mathcal{G}(q_0)$ that we call generalized golden ratio. Similarly, the curve separating pairs $(q_0, q_1)$ with countable $U_{q_0,q_1}$ from those with uncountable $U_{q_0,q_1}$ is the graph of a function $\mathcal{K}(q_0)$ that we call generalized Komornik--Loreti constant. We show that the two curves are symmetric in $q_0$ and $q_1$, that $\mathcal{G}$ and $\mathcal{K}$ are continuous, strictly decreasing, hence almost everywhere differentiable on $(1,\infty)$, and that the Hausdorff dimension of the set of $q_0$ satisfying $\mathcal{G}(q_0)=\mathcal{K}(q_0)$ is zero. We give formulas for $\mathcal{G}(q_0)$ and $\mathcal{K}(q_0)$ for all $q_0 > 1$, using characterizations of when a binary subshift avoiding a lexicographic interval is trivial, countable, uncountable with zero entropy and uncountable with positive entropy respectively. Our characterizations in terms of $S$-adic sequences including Sturmian and the Thue--Morse sequences are simpler than those of Labarca and Moreira (2006) and Glendinning and Sidorov (2015), and are relevant also for other open dynamical systems.