论文标题

小组字段理论的随机动力学

Stochastic dynamics for Group Field Theories

论文作者

Lahoche, Vincent, Samary, Dine Ousmane

论文摘要

对于几何发生场景的基本特征,预期具有自发对称性破坏的相变。以下论文旨在通过使用gibbs-boltzmann分布必须分解的千古假说来研究小组场理论的平衡阶段。通过引入一个虚拟的时间来诱导通过langevin方程描述的随机过程,可以动态地考虑恐怖性的破裂,从中,张量场的随机性将是一个结果。这种方程式被认为是尤其是对于复杂的良性可公平的Abelian等级d = 5的模型,我们通过使用重新归一化的组来研究其某些特性,这些属性都考虑到时间和空间上的粗糙度。

Phase transitions with spontaneous symmetry breaking are expected for group field theories as a basic feature of the geometogenesis scenario. The following paper aims to investigate the equilibrium phase for group field theory by using the ergodic hypothesis on which the Gibbs-Boltzmann distributions must break down. The breaking of the ergodicity can be considered dynamically, by introducing a fictitious time inducing a stochastic process described through a Langevin equation, from which the randomness of the tensor field will be a consequence. This type of equation is considered particularly for complex just-renormalizable Abelian model of rank d = 5, and we study some of their properties by using a renormalization group considering a coarse- graining both in time and space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源