论文标题
共形重力的能量功能
Energy functionals from Conformal Gravity
论文作者
论文摘要
我们通过将Einstein-Aads Gravity嵌入共形性重力中,为渐近广告的鹰质量和Willmore Energy功能提供新的推导。通过构造,与锥形缺陷的多种歧管中四维保形重力作用的评估会产生Codimension-2保形不变功能$L_σ$。然后,能量功能分别为Einstein-Ads和Pure Ads环境空间的特定情况。大量作用是广告渐近学的有限作用,霍金质量和威尔莫尔能量也是有限的。结果表明,共形不变性和重新归一化之间存在通用关系,其中编码2性质是从大量重力作用继承的。
We provide a new derivation of the Hawking mass and Willmore energy functionals for asymptotically AdS spacetimes, by embedding Einstein-AdS gravity in Conformal Gravity. By construction, the evaluation of the four-dimensional Conformal Gravity action in a manifold with a conical defect produces a codimension-2 conformal invariant functional $L_Σ$. The energy functionals are then particular cases of $L_Σ$ for Einstein-AdS and pure AdS ambient spaces, respectively. The bulk action is finite for AdS asymptotics and both Hawking mass and Willmore energy are finite as well. The result suggests a generic relation between conformal invariance and renormalization, where the codimension-2 properties are inherited from the bulk gravity action.