论文标题

HAGCN:基于网络分散注意力的异质性 - 感知时空图​​形卷积网络,用于交通信号预测

HAGCN : Network Decentralization Attention Based Heterogeneity-Aware Spatiotemporal Graph Convolution Network for Traffic Signal Forecasting

论文作者

Jang, JunKyu, Park, Sung-Hyuk

论文摘要

使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了该方法的有效性,比现有模型提高了6.35%,并实现了最先进的预测性能。

The construction of spatiotemporal networks using graph convolution networks (GCNs) has become one of the most popular methods for predicting traffic signals. However, when using a GCN for traffic speed prediction, the conventional approach generally assumes the relationship between the sensors as a homogeneous graph and learns an adjacency matrix using the data accumulated by the sensors. However, the spatial correlation between sensors is not specified as one but defined differently from various viewpoints. To this end, we aim to study the heterogeneous characteristics inherent in traffic signal data to learn the hidden relationships between sensors in various ways. Specifically, we designed a method to construct a heterogeneous graph for each module by dividing the spatial relationship between sensors into static and dynamic modules. We propose a network decentralization attention based heterogeneity-aware graph convolution network (HAGCN) method that aggregates the hidden states of adjacent nodes by considering the importance of each channel in a heterogeneous graph. Experimental results on real traffic datasets verified the effectiveness of the proposed method, achieving a 6.35% improvement over the existing model and realizing state-of-the-art prediction performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源