论文标题
$ ads_3 \ times s^3 \ times t^4 $:镜像更正
Hexagonalization in $AdS_3 \times S^3 \times T^4$: Mirror Corrections
论文作者
论文摘要
$ ads_3 \ times s^3 \ times t^4 $全息二元性中的一个很大的开放问题是计算双重理论的CFT数据。最近,在这个方向上,它在$ ADS_3 $上下文中引入了六角化框架。它允许计算平面限制中cft $ _2 $双重二元组的结构常数,但是在此提案中,它仅引入了六角形的渐近部分,适用于具有渐近桥长度的相关器。在这项工作中,我们通过计算所谓的镜像校正来完成这张图片,该镜像校正允许描述有限桥长度的结构常数,并且作为副产品,我们还证明了该理论中的半bps操作员不会接受这些更正。最终,我们将使用六边形化来计算$ aDS_3 \ times s^3 \ times t^4 $全息二元性的第一步来计算$ n $ point函数。
A big open problem in $AdS_3 \times S^3 \times T^4$ holographic duality is to compute the CFT data of the dual theory. In this direction recently it was introduced the hexagonalization framework in the $AdS_3$ context. It allows the computation of the structure constants of the CFT$_2$ dual in the planar limit non-perturbatively, however in this proposal it was introduced only the asymptotic part of the hexagon valid for correlators with asymptotically large bridge lengths. In this work we complete this picture by computing the so called mirror corrections that allow to describe structure constants for finite bridge lengths and as a byproduct we also prove that the half-BPS operators in the theory do not receive these corrections. We end up by giving the first steps on using hexagonalization to compute $n$-point functions in the $AdS_3 \times S^3 \times T^4$ holographic duality.