论文标题

Mucaslam:基于CNN的移动机器人框架质量评估,并具有全向视觉大满贯

MuCaSLAM: CNN-Based Frame Quality Assessment for Mobile Robot with Omnidirectional Visual SLAM

论文作者

Karpyshev, Pavel, Kruzhkov, Evgeny, Yudin, Evgeny, Savinykh, Alena, Potapov, Andrei, Kurenkov, Mikhail, Kolomeytsev, Anton, Kalinov, Ivan, Tsetserukou, Dzmitry

论文摘要

在拟议的研究中,我们描述了一种方法,可以通过在摄像机和SLAM管道之间实现中间层来提高具有多个摄像机的移动机器人和有限的计算能力的移动机器人的计算效率和鲁棒性。在此层中,图像是使用基于RESNET18的神经网络对机器人定位的适用性进行分类的。该网络接受了在Skolkovo科学技术学院(Skoltech)校园收集的六摄像机数据集培训。对于训练,我们使用了与随后的同一相机(“良好”关键点或功能)成功匹配的图像和ORB功能。结果表明,网络能够准确确定ORB-SLAM2的最佳图像,并且在SLAM管道中实现拟议的方法可以显着增加SLAM算法可以定位的图像数量,并提高视觉大满贯的整体鲁棒性。与使用Orb提取器和在CPU操作时使用Orb提取器和功能匹配器相比,操作时间的实验表明,在CPU上使用的方法至少要快6倍,并且在GPU上运行时要快30倍以上。网络评估在识别具有大量“良好” ORB关键的图像时至少显示了90%的精度。提出的方法的使用允许通过从具有贫困的摄像机从相机切换来保持整个数据集的大量功能。

In the proposed study, we describe an approach to improving the computational efficiency and robustness of visual SLAM algorithms on mobile robots with multiple cameras and limited computational power by implementing an intermediate layer between the cameras and the SLAM pipeline. In this layer, the images are classified using a ResNet18-based neural network regarding their applicability to the robot localization. The network is trained on a six-camera dataset collected in the campus of the Skolkovo Institute of Science and Technology (Skoltech). For training, we use the images and ORB features that were successfully matched with subsequent frame of the same camera ("good" keypoints or features). The results have shown that the network is able to accurately determine the optimal images for ORB-SLAM2, and implementing the proposed approach in the SLAM pipeline can help significantly increase the number of images the SLAM algorithm can localize on, and improve the overall robustness of visual SLAM. The experiments on operation time state that the proposed approach is at least 6 times faster compared to using ORB extractor and feature matcher when operated on CPU, and more than 30 times faster when run on GPU. The network evaluation has shown at least 90% accuracy in recognizing images with a big number of "good" ORB keypoints. The use of the proposed approach allowed to maintain a high number of features throughout the dataset by robustly switching from cameras with feature-poor streams.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源