论文标题
使用广义的Debye-Huckel模型预测水甲醇混合物中活性系数
Prediction of activity coefficients in water-methanol mixtures using a generalized Debye-Huckel model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We propose a generalized Debye-Huckel model from Poisson-Fermi theory to predict the mean activity coefficient of electrolytes in water-methanol mixtures with arbitrary percentage of methanol from 0 to 100%. The model applies to any number of ionic species and accounts for both short and long ion-ion, ion-water, ion-methanol, and water-methanol interactions, the size effect of all particles, and the dielectric effect of mixed-solvent solutions. We also present a numerical algorithm with mathematical and physical details for using the model to fit or predict experimental data. The model has only 3 empirical parameters to fit the experimental data of NaF, NaCl, and NaBr, for example, in pure-water solutions. It then uses another 3 parameters to predict the activities of these salts in mixed-solvent solutions for any percentage of methanol. Values of these parameters show mathematical or physical meaning of ionic activities under variable mixing condition and salt concentration. The algorithm can automatically determine optimal values for the 3 fitting parameters without any manual adjustments.