论文标题
优化可重新配置的光学数据中心:随机化的功能
Optimizing Reconfigurable Optical Datacenters: The Power of Randomization
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Reconfigurable optical topologies are a promising new technology to improve datacenter network performance and cope with the explosive growth of traffic. In particular, these networks allow to directly and adaptively connect racks between which there is currently much traffic, hence making an optimal use of the bandwidth capacity by avoiding multi-hop forwarding. This paper studies the dynamic optimization of such reconfigurable topologies, by adapting the network to the traffic in an online manner. The underlying algorithmic problem can be described as an online maximum weight $b$-matching problem, a~generalization of maximum weight matching where each node has at most $b \geq 1$ incident matching edges. We make the case for a randomized approach for matching optimization. Our main contribution is a $O(\log b)$-competitive algorithm and we show that it is asymptotically optimal. This algorithm is hence exponentially better than the best possible deterministic online algorithm. We complement our theoretical results with extensive trace-driven simulations, based on real-world datacenter workloads.