论文标题

部分可观测时空混沌系统的无模型预测

Investigating the Impact of Model Misspecification in Neural Simulation-based Inference

论文作者

Cannon, Patrick, Ward, Daniel, Schmon, Sebastian M.

论文摘要

在神经密度估计的进展之后,近年来,已经取得了相当大的进步,可以实现一套基于模拟的推理(SBI)方法,能够对随机模拟模型进行灵活的黑盒,近似贝叶斯的推断。尽管已经证明神经SBI方法可以提供准确的后近似值,但建立这些结果的仿真研究仅考虑了明确指定的问题 - 即模型和数据生成过程完全重合的地方。但是,在模型错误指定的情况下,这种算法的行为很少受到关注。在这项工作中,我们将在存在各种形式的模型错误指定的情况下对神经SBI算法的行为进行了首次全面研究。我们发现错误指定对性能会产生深远的有害影响。探索了一些缓解策略,但是未测试的方法在所有情况下都可以防止失败。我们得出的结论是,如果要依靠神经SBI算法来得出准确的科学结论,则需要新的方法来解决模型错误指定。

Aided by advances in neural density estimation, considerable progress has been made in recent years towards a suite of simulation-based inference (SBI) methods capable of performing flexible, black-box, approximate Bayesian inference for stochastic simulation models. While it has been demonstrated that neural SBI methods can provide accurate posterior approximations, the simulation studies establishing these results have considered only well-specified problems -- that is, where the model and the data generating process coincide exactly. However, the behaviour of such algorithms in the case of model misspecification has received little attention. In this work, we provide the first comprehensive study of the behaviour of neural SBI algorithms in the presence of various forms of model misspecification. We find that misspecification can have a profoundly deleterious effect on performance. Some mitigation strategies are explored, but no approach tested prevents failure in all cases. We conclude that new approaches are required to address model misspecification if neural SBI algorithms are to be relied upon to derive accurate scientific conclusions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源