论文标题
LKD-NET:单图像Dhazing的大内核卷积网络
LKD-Net: Large Kernel Convolution Network for Single Image Dehazing
论文作者
论文摘要
基于深度卷积神经网络(CNN)基于基于的单图像脱掩的方法已取得了巨大的成功。以前的方法致力于通过增加网络的深度和宽度来改善网络的性能。当前的方法着重于增加卷积内核的大小,以通过受益于更大的接受场来提高其性能。但是,直接增加卷积内核的大小会引入大量计算开销和参数。因此,本文设计了一个新型的大内核卷积磁心块(LKD块),该散发器(LKD块)由分解深度大的内核卷积块(DLKCB)和通道增强的进料前向前向网络(CEFN)组成。设计的DLKCB可以将深度的大内核卷积分为较小的深度卷积,并在不引入大量参数和计算开销的情况下进行深度扩张的卷积。同时,设计的CEFN将通道注意机制纳入馈电网络中,以利用重要的通道并增强鲁棒性。通过组合多个LKD块和上向下的采样模块,可以进行大内核卷积DeHaze网络(LKD-NET)。评估结果证明了设计的DLKCB和CEFN的有效性,而我们的LKD-NET优于最先进的功能。在SOTS室内数据集上,我们的LKD-NET极大地优于基于变压器的方法Dehamer,只有1.79%#PARAM和48.9%的FLOPS。我们的LKD-NET的源代码可在https://github.com/swu-cs-medialab/lkd-net上找到。
The deep convolutional neural networks (CNNs)-based single image dehazing methods have achieved significant success. The previous methods are devoted to improving the network's performance by increasing the network's depth and width. The current methods focus on increasing the convolutional kernel size to enhance its performance by benefiting from the larger receptive field. However, directly increasing the size of the convolutional kernel introduces a massive amount of computational overhead and parameters. Thus, a novel Large Kernel Convolution Dehaze Block (LKD Block) consisting of the Decomposition deep-wise Large Kernel Convolution Block (DLKCB) and the Channel Enhanced Feed-forward Network (CEFN) is devised in this paper. The designed DLKCB can split the deep-wise large kernel convolution into a smaller depth-wise convolution and a depth-wise dilated convolution without introducing massive parameters and computational overhead. Meanwhile, the designed CEFN incorporates a channel attention mechanism into Feed-forward Network to exploit significant channels and enhance robustness. By combining multiple LKD Blocks and Up-Down sampling modules, the Large Kernel Convolution Dehaze Network (LKD-Net) is conducted. The evaluation results demonstrate the effectiveness of the designed DLKCB and CEFN, and our LKD-Net outperforms the state-of-the-art. On the SOTS indoor dataset, our LKD-Net dramatically outperforms the Transformer-based method Dehamer with only 1.79% #Param and 48.9% FLOPs. The source code of our LKD-Net is available at https://github.com/SWU-CS-MediaLab/LKD-Net.