论文标题
生长介导的自我化学模式形成的数值分析
Numerical analysis of growth-mediated autochemotactic pattern formation in self-propelling bacteria
论文作者
论文摘要
在本文中,提供了一个解耦的特征性盖素有限元程序,用于模拟自我传播细菌中的生长介导的自身化学模式形成。在此过程中,建立了一种修改的特征盖金方法来解决细菌密度方程,而经典有限元过程则考虑用于自分泌的化学密度和极化动力学方程系统。在某些规律性假设下考虑了该提出的方法的收敛性,并得出相应的误差估计。进行数值实验以支持理论分析。此外,发现了几种新的波型模式形成。
In this paper, a decoupled characteristic Galerkin finite element procedure is provided for simulating growth-mediated autochemotactic pattern formation in self-propelling bacteria. In this procedure, a modified characteristic Galerkin method is established to solve the bacterial density equation, while the classical finite element procedure is considered for the self-secreted chemical density and polarization dynamics equations system. The convergence of this proposed method is considered under some regularity assumptions and the corresponding error estimate is derived. Numerical experiments are carried out to support the theoretical analysis. Furthermore, several new wave type pattern formations are found.