论文标题
Carlson型零密度定理用于beurling Zeta函数
The Carlson-type zero-density theorem for the Beurling zeta function
论文作者
论文摘要
在上一篇论文中,我们证明了Carlson型密度定理的临界条中的零,用于满足Knopfmacher的公理A的zeta函数。在那里,我们需要调用两个附加条件,即标准的完整性(条件B)和算术函数的“平均Ramanujan条件”,以计算相同标准(条件G)的不同Beurling整数的数量。 在这里,我们使用经典的零检测总和与Halász的方法实现了Pintz的新方法,但以基本的方式避免了例如大筛型不平等。这样,我们给出了一个新的证明卡尔森类型密度估计值(与明确常数)避免使用以前需要的两个其他条件。 因此,可以看出,卡尔森型密度估计的有效性并不取决于任何额外的假设 - 塞尔伯格类别的功能方程,也不取决于Selberg类别的功能方程,也不取决于系数的增长估计值所说的“平均Ramanujan型”,但无论何时可以通过A. A. A. A. A. A. A.
In a previous paper we proved a Carlson type density theorem for zeroes in the critical strip for Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additonal conditions, the integrality of the norm (Condition B) and an "average Ramanujan Condition" for the arithmetical function counting the number of different Beurling integers of the same norm (Condition G). Here we implement a new approach of Pintz, using the classic zero detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding e.g. large sieve type inequalities. This way we give a new proof of a Carlson type density estimate--with explicit constants--avoiding any use of the two additional conditions, needed earlier. Therefore it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption--neither on the functional equation, present for the Selberg class, nor on growth estimates of coefficients say of the "average Ramanujan type"-but is a general property, presenting itself whenever the analytic continuation is guaranteed by Axiom A.