论文标题
矩阵力矩问题的递归方法
A Recursive approach to the matrix moment problem
论文作者
论文摘要
在本文中,我们通过递归矩阵扩展研究一个变量中的截短矩阵矩问题。 \我们为有限数据的递归矩阵扩展提供了必要的条件,使其成为汉堡,stieltjes和Hausdorff矩问题的经典案例中的基质矩序。 \我们还讨论了矩阵亚正态分解和母大学$ K $ - 不正常的完成问题,并提供了Stampfli的平面传播定理的类似物,价格为$ 2 $ - 不正常的母亲加权转移。
In this paper, we study the truncated matrix moment problem in one variable through recursive matrix extensions. \ We give necessary and sufficient conditions for a recursive matrix extension of finite data to be a matrix moment sequence in the classical cases of Hamburger, Stieltjes, and Hausdorff moment problems. \ We also discuss matricial subnormal completion and matricial $k$--hyponormal completion problems and provide an analog of Stampfli's Theorem on flat propagation for $2$--hyponormal matricial weighted shifts.