论文标题
基于CNN的心脏MR分割的种族和性偏见的系统研究
A systematic study of race and sex bias in CNN-based cardiac MR segmentation
论文作者
论文摘要
在计算机视觉中,在评估深度学习模型中潜在的人口偏见方面具有重要的研究兴趣。这种偏见的主要原因之一是训练数据中的不平衡。在医学成像中,偏见的潜在影响可以说要大得多,因此兴趣较小。在医学成像管道中,对感兴趣的结构的分割在估计随后用于告知患者管理的临床生物标志物方面起着重要作用。卷积神经网络(CNN)开始用于自动化此过程。我们介绍了第一个系统的研究研究,该研究对基于CNN的细分中的种族和性别偏见的影响对种族和性偏见的影响。我们专注于从短轴Cine Cine心脏磁共振图像中对心脏结构进行分割,并训练具有不同种族/性别不平衡水平的CNN分割模型。我们在性别实验中没有明显的偏见,但是在两个单独的种族实验中,有明显的偏见,强调需要考虑健康数据集中不同人口组的足够代表。
In computer vision there has been significant research interest in assessing potential demographic bias in deep learning models. One of the main causes of such bias is imbalance in the training data. In medical imaging, where the potential impact of bias is arguably much greater, there has been less interest. In medical imaging pipelines, segmentation of structures of interest plays an important role in estimating clinical biomarkers that are subsequently used to inform patient management. Convolutional neural networks (CNNs) are starting to be used to automate this process. We present the first systematic study of the impact of training set imbalance on race and sex bias in CNN-based segmentation. We focus on segmentation of the structures of the heart from short axis cine cardiac magnetic resonance images, and train multiple CNN segmentation models with different levels of race/sex imbalance. We find no significant bias in the sex experiment but significant bias in two separate race experiments, highlighting the need to consider adequate representation of different demographic groups in health datasets.