论文标题
增强图形的持续学习
Reinforced Continual Learning for Graphs
论文作者
论文摘要
图神经网络(GNN)已成为与图形和类似拓扑数据结构有关的无数任务的骨干。尽管已经在与节点和图形分类/回归任务有关的域中建立了许多作品,但它们主要处理一个任务。在图形上的持续学习在很大程度上是没有探索的,现有的图形持续学习方法仅限于任务收入学习方案。本文提出了一个持续学习策略,该策略结合了基于架构和基于内存的方法。结构学习策略是由强化学习驱动的,在该学习中,对控制器网络进行了这种方式,以确定观察到新任务时从基本网络中添加/修剪的最佳节点,从而确保足够的网络容量。参数学习策略的基础是黑暗体验重播方法的概念,以应对灾难性的遗忘问题。我们的方法在任务收入学习和课堂学习设置中都通过几个图持续学习基准问题进行数值验证。与最近发表的作品相比,我们的方法在这两种情况下都表明了性能的提高。可以在\ url {https://github.com/codexhammer/gcl}找到实现代码。
Graph Neural Networks (GNNs) have become the backbone for a myriad of tasks pertaining to graphs and similar topological data structures. While many works have been established in domains related to node and graph classification/regression tasks, they mostly deal with a single task. Continual learning on graphs is largely unexplored and existing graph continual learning approaches are limited to the task-incremental learning scenarios. This paper proposes a graph continual learning strategy that combines the architecture-based and memory-based approaches. The structural learning strategy is driven by reinforcement learning, where a controller network is trained in such a way to determine an optimal number of nodes to be added/pruned from the base network when new tasks are observed, thus assuring sufficient network capacities. The parameter learning strategy is underpinned by the concept of Dark Experience replay method to cope with the catastrophic forgetting problem. Our approach is numerically validated with several graph continual learning benchmark problems in both task-incremental learning and class-incremental learning settings. Compared to recently published works, our approach demonstrates improved performance in both the settings. The implementation code can be found at \url{https://github.com/codexhammer/gcl}.