论文标题

在极端标签稀缺下的自主跨域适应

Autonomous Cross Domain Adaptation under Extreme Label Scarcity

论文作者

Weng, Weiwei, Pratama, Mahardhika, Za'in, Choiru, De Carvalho, Marcus, Appan, Rakaraddi, Ashfahani, Andri, Yee, Edward Yapp Kien

论文摘要

跨域多式分类是一个具有挑战性的问题,要求快速域改编以处理在永无止境和快速变化的环境中处理不同但相关的流。尽管现有的多式分类器在目标流中没有标记的样品,但它们仍然会产生昂贵的标签成本,因为它们需要完全标记的源流样品。本文旨在攻击跨域多发行分类问题中极端标签短缺的问题,在过程运行之前,仅提供了很少的标记源流样品。我们的解决方案,即从部分基础真理(Leopard)中学习的流媒体过程,建立在一个灵活的深度聚类网络上,在该网络中,其隐藏的节点,层和簇被添加并在不同的数据分布方面动态删除。同时的特征学习和聚类技术为群集友好的潜在空间提供了同时的特征学习和聚类技术的基础。域的适应策略依赖于对抗域的适应技术,其中训练了特征提取器来欺骗域分类器对源和目标流进行分类。我们的数值研究证明了豹子的功效,在24例中的15例中,与突出算法相比,它可以提高性能的改善。豹子的源代码在\ url {https://github.com/wengweng001/leopard.git}中共享,以实现进一步的研究。

A cross domain multistream classification is a challenging problem calling for fast domain adaptations to handle different but related streams in never-ending and rapidly changing environments. Notwithstanding that existing multistream classifiers assume no labelled samples in the target stream, they still incur expensive labelling cost since they require fully labelled samples of the source stream. This paper aims to attack the problem of extreme label shortage in the cross domain multistream classification problems where only very few labelled samples of the source stream are provided before process runs. Our solution, namely Learning Streaming Process from Partial Ground Truth (LEOPARD), is built upon a flexible deep clustering network where its hidden nodes, layers and clusters are added and removed dynamically in respect to varying data distributions. A deep clustering strategy is underpinned by a simultaneous feature learning and clustering technique leading to clustering-friendly latent spaces. A domain adaptation strategy relies on the adversarial domain adaptation technique where a feature extractor is trained to fool a domain classifier classifying source and target streams. Our numerical study demonstrates the efficacy of LEOPARD where it delivers improved performances compared to prominent algorithms in 15 of 24 cases. Source codes of LEOPARD are shared in \url{https://github.com/wengweng001/LEOPARD.git} to enable further study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源