论文标题
大量多语言神经机器翻译的信息语言表示学习
Informative Language Representation Learning for Massively Multilingual Neural Machine Translation
论文作者
论文摘要
在一个完全共享所有语言参数的多语言神经机器翻译模型中,通常使用人工语言令牌来指导转换为所需的目标语言。但是,最近的研究表明,预备语言代币有时无法将多语言神经机器翻译模型导航到正确的翻译方向,尤其是在零弹性翻译上。为了减轻此问题,我们提出了两种方法:语言嵌入实施例和语言意识的多头关注,以学习信息丰富的语言表示,以将翻译转换为正确的方向。前者沿着从源到目标的信息流中体现了语言嵌入到不同的关键切换点中,旨在放大翻译方向引导信号。后者利用矩阵而不是向量来表示连续空间中的语言。矩阵分为多个头,以便在多个子空间中学习语言表示。在两个数据集上进行大规模多语言神经机器翻译的实验结果表明,语言意识到的多头注意力受益于监督和零弹性翻译,并大大减轻了非目标翻译问题。进一步的语言类型学预测实验表明,通过我们的方法学到的基于基质的语言表示能够捕获丰富的语言类型学特征。
In a multilingual neural machine translation model that fully shares parameters across all languages, an artificial language token is usually used to guide translation into the desired target language. However, recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions, especially on zero-shot translation. To mitigate this issue, we propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions. The former embodies language embeddings into different critical switching points along the information flow from the source to the target, aiming at amplifying translation direction guiding signals. The latter exploits a matrix, instead of a vector, to represent a language in the continuous space. The matrix is chunked into multiple heads so as to learn language representations in multiple subspaces. Experiment results on two datasets for massively multilingual neural machine translation demonstrate that language-aware multi-head attention benefits both supervised and zero-shot translation and significantly alleviates the off-target translation issue. Further linguistic typology prediction experiments show that matrix-based language representations learned by our methods are capable of capturing rich linguistic typology features.