论文标题

使用深度学习来识别蜂巢声音

Identify The Beehive Sound Using Deep Learning

论文作者

Quaderi, Shah Jafor Sadeek, Labonno, Sadia Afrin, Mostafa, Sadia, Akhter, Shamim

论文摘要

花在从环境中去除乏味的情况下起着至关重要的作用。开花植物的生命周期涉及授粉,受精,开花,种子形成,分散和发芽。 Honeybees授粉了所有开花植物的75%。环境污染,气候变化,自然景观拆除等等,威胁着自然栖息地,从而不断减少蜜蜂的数量。结果,一些研究人员试图解决这个问题。将声学分类应用于蜂巢声音的记录可能是检测其中的变化的一种方式。在这项研究中,我们在记录的声音上使用深度学习技术,即顺序神经网络,卷积神经网络和经常性的神经网络,以从非季节的声音中分类蜜蜂的声音。此外,我们通过深度学习技术对一些流行的非深度学习技术进行了比较研究,即支持向量机,决策树,随机森林和幼稚的贝叶斯。这些技术还通过记录的声音(25-75%的噪音)进行了验证。

Flowers play an essential role in removing the duller from the environment. The life cycle of the flowering plants involves pollination, fertilization, flowering, seed-formation, dispersion, and germination. Honeybees pollinate approximately 75% of all flowering plants. Environmental pollution, climate change, natural landscape demolition, and so on, threaten the natural habitats, thus continuously reducing the number of honeybees. As a result, several researchers are attempting to resolve this issue. Applying acoustic classification to recordings of beehive sounds may be a way of detecting changes within them. In this research, we use deep learning techniques, namely Sequential Neural Network, Convolutional Neural Network, and Recurrent Neural Network, on the recorded sounds to classify bee sounds from the nonbeehive noises. In addition, we perform a comparative study among some popular non-deep learning techniques, namely Support Vector Machine, Decision Tree, Random Forest, and Naïve Bayes, with the deep learning techniques. The techniques are also verified on the combined recorded sounds (25-75% noises).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源