论文标题
高维时间序列的可解释和高效的无限级自回归模型
An Interpretable and Efficient Infinite-Order Vector Autoregressive Model for High-Dimensional Time Series
论文作者
论文摘要
作为一种特殊的无限阶矢量自回旋(VAR)模型,矢量自回归移动平均值(VARMA)模型比广泛使用的有限级var模型可以捕获更丰富的时间模式。然而,长期以来,其实用性一直受到其不可识别性,计算棘手性和解释难度的阻碍,尤其是对于高维时间序列。本文提出了一个新型的稀疏无限级VAR模型,用于高维时间序列,该模型避免了所有缺点,同时继承了VARMA模型的基本时间模式。作为另一个有吸引力的功能,该模型捕获的VARMA型动力学的时间和横截面结构可以分别解释,因为它们的特征是不同的参数集。这种分离自然激发了确定横截面依赖性的参数的稀疏性假设。结果,在几乎没有时间信息的情况下,可以实现更高的统计效率和可解释性。我们为提出的模型介绍了两种$ \ ell_1 $调查估计方法,可以通过块坐标下降算法有效地实现,并得出相应的非扰动误差范围。还开发了一种基于贝叶斯信息标准的一致模型订单选择方法。拟议方法的优点得到了模拟研究和现实世界的宏观经济数据分析的支持。
As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and difficulty of interpretation, especially for high-dimensional time series. This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series, which avoids all above drawbacks while inheriting essential temporal patterns of the VARMA model. As another attractive feature, the temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately, since they are characterized by different sets of parameters. This separation naturally motivates the sparsity assumption on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved with little loss of temporal information. We introduce two $\ell_1$-regularized estimation methods for the proposed model, which can be efficiently implemented via block coordinate descent algorithms, and derive the corresponding nonasymptotic error bounds. A consistent model order selection method based on the Bayesian information criteria is also developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.