论文标题
首先点击扩散模型,以生成歧管,图形和分类数据
First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data
论文作者
论文摘要
我们提出了一个首次击中扩散模型(FHDM)的家族,该模型是深层生成模型,该模型以扩散过程生成数据,该过程在随机的首次击中时间终止。这产生了在预先指定的确定性时间终止的标准固定时间扩散模型的扩展。尽管标准扩散模型是为连续不受约束的数据而设计的,但FHDM自然设计用于学习连续和一系列离散和结构域的分布。此外,FHDM启用了依赖实例的终止时间,并加速了扩散过程,以更少的扩散步骤采样更高质量的数据。从技术上讲,我们通过根据DOOB的$ h $变换得出的有条件的首次击中过程(即桥)来训练FHDM,以从观察到的数据(即,桥梁)从观察到的数据中增强的扩散轨迹训练FHDM。我们应用FHDM在各种域中生成数据,例如点云(一般连续分布),地球上的气候和地理事件(球体上的连续分布),未加权的图(二进制矩阵的分布)以及2D图像的分割图(高维图像)(高维分布分布)。与最新的质量和速度方法相比,我们观察到相当大的改善。
We propose a family of First Hitting Diffusion Models (FHDM), deep generative models that generate data with a diffusion process that terminates at a random first hitting time. This yields an extension of the standard fixed-time diffusion models that terminate at a pre-specified deterministic time. Although standard diffusion models are designed for continuous unconstrained data, FHDM is naturally designed to learn distributions on continuous as well as a range of discrete and structure domains. Moreover, FHDM enables instance-dependent terminate time and accelerates the diffusion process to sample higher quality data with fewer diffusion steps. Technically, we train FHDM by maximum likelihood estimation on diffusion trajectories augmented from observed data with conditional first hitting processes (i.e., bridge) derived based on Doob's $h$-transform, deviating from the commonly used time-reversal mechanism. We apply FHDM to generate data in various domains such as point cloud (general continuous distribution), climate and geographical events on earth (continuous distribution on the sphere), unweighted graphs (distribution of binary matrices), and segmentation maps of 2D images (high-dimensional categorical distribution). We observe considerable improvement compared with the state-of-the-art approaches in both quality and speed.